Bienvenido a Revelroom.ca, la mejor plataforma de preguntas y respuestas para obtener soluciones rápidas y precisas a todas tus dudas. Nuestra plataforma ofrece una experiencia continua para encontrar respuestas fiables de una red de profesionales experimentados. Descubre un vasto conocimiento de profesionales en diferentes disciplinas en nuestra amigable plataforma de preguntas y respuestas.

hallar la ecuacion de la parabola cuyo lado recto el segmento ente los puntos(3,5) y(3,-3)



Sagot :

el lado recto igual a 4p si  la parabola tiene vertice en el origen la ecuacion es: y^2 = 4pX

Por tanto 4p es la distancia entre los puntos (3,5) y (3,-3)

d = [tex]\sqrt{(3-3)^{2}+(-3-5)^{2}}[/tex]

4p = 8


y^2 = 8x

La ecuación de la parábola es   (y - 1)² = 8 (x - 1)

Explicación paso a paso:

Sabemos que la expresión de la ecuación ordinaria de una ecuación es la siguiente:

                                (y - k)² = 2 p (x - h)

Siendo:

  • (h,k) las coordenadas del vértice.
  • 2p correspode a la longitud del lado recto de la misma.

Para el caso de esta expresión diremos que:

2 p = 8; p/2 es la distancia del foco al vértice).

h = 3 - 2 = 1; k = (5 - 3)/2 = 1

Entonces podemos decir que la ecuación de la parábola es la siguiente:

(y - 1)² = 8 (x - 1)

Ver más: https://brainly.lat/tarea/2970243

View image mary24457181ozqyux