Obtén respuestas rápidas y precisas a todas tus preguntas en Revelroom.ca, la plataforma de Q&A de confianza. Descubre soluciones completas a tus preguntas con la ayuda de profesionales experimentados en nuestra amigable plataforma. Explora miles de preguntas y respuestas proporcionadas por una amplia gama de expertos en diversas áreas en nuestra plataforma de preguntas y respuestas.
Sagot :
NDUCCIÓN EJERCICIOS RESUELTOS 1.Demostrar que la suma de los η primeros números naturales es igual a η(η +1)/2. Solución: Queremos probar que ∀η∈Ν : 1 + 2 + 3 + ... + η=η(η +1)/2 Sea ρ(η) : 1 + 2 + 3 + ... + η=η(η +1)/2 ; debemos probar que ρ(η) satisface las propiedades (1) y (2) del teorema 2. (1) ρ(1): 1 = 1(1 + 1)/2 , lo cual es verdadero. (2)Sea η∈Ν , debemos probar que ρ(η)⇒ρ(η + 1) es verdadero. Nótese que si ρ(η)es falsa la implicación es verdadera, de modo que hay que hacer la demostración suponiendo que ρ(η)es verdadera. (Esto es lo que se llama hipótesis inductiva). Supongamos entonces que ρ(η) es verdadera, es decir, que 1 +2 +3 + ... + η = η(η+1)/2es verdadera. Como ρ(η+1) : 1 +2 +3 + ... + (η+1)=(η+1)[(η+1) + 1 ]/2 , ρ(η+1) debe poder formarse de ρ(η) sumando η+1 a ambos miembros de la igualdad (de la hipótesis inductiva) : 1 +2 + 3 + ... + η+ (η+1)=η(η+1)/2+(η+1)=(η+1)[η/2+1]=(η+1)(η+2)/2Hemos confirmado nuestras sospechas, lo que, en lenguaje formal, significa que hemos deducido que ρ(η+1) es verdadera, suponiendo que ρ(η) lo es. Así, hemos probado que ∀η∈Ν : ρ(η)⇒ρ(η+1) es verdadera. Luego, ∀η∈Ν: 1 +2 + 3 + ... + η=η(η+1)/2 es una fórmula correcta
Gracias por visitar nuestra plataforma. Esperamos que hayas encontrado las respuestas que buscabas. Vuelve cuando necesites más información. Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Nos encanta responder tus preguntas. Regresa a Revelroom.ca para obtener más respuestas.