Bienvenido a Revelroom.ca, donde puedes obtener respuestas confiables y rápidas con la ayuda de nuestros expertos. Obtén respuestas rápidas a tus preguntas de una red de profesionales experimentados en nuestra plataforma de preguntas y respuestas. Descubre respuestas detalladas a tus preguntas gracias a una vasta red de profesionales en nuestra completa plataforma de preguntas y respuestas.
Sagot :
[tex]Sea:\ y=ln[f(x)]\\ \\su\ derivada\ es:\ y'=\frac{f'(x)}{f(x)}[/tex]
Identifiquemos f(x)
[tex]y=ln(x^2+5)\\ \\f(x)=x^2+5\\ \\su\ derivada\ es\ f'(x)=2x\\ \\entonces:\\ \\y'=\frac{f'(x)}{f(x)}=\frac{2x}{x^2+5}[/tex]
[tex]y=\frac{2x}{x^2+5}[/tex]
Identifiquemos f(x)
[tex]y=ln(x^2+5)\\ \\f(x)=x^2+5\\ \\su\ derivada\ es\ f'(x)=2x\\ \\entonces:\\ \\y'=\frac{f'(x)}{f(x)}=\frac{2x}{x^2+5}[/tex]
[tex]y=\frac{2x}{x^2+5}[/tex]
OJO: [tex] \frac{d \ ln(u)}{dx} = \frac{u'}{u} [/tex]
=> Si y = ln(x^2 + 5) , tendriamos que:
[tex] \frac{d \ y}{dx} = y' = \frac{(x^2+5)'}{x^2+5} \ \ [/tex]
[tex] \frac{d \ y}{dx} = y' = \frac{2x^{2-1}}{x^2+5} [/tex]
[tex] \frac{d \ y}{dx} = y' = \frac{2x}{x^2+5} [/tex] ← Respuesta
Eso es todo!
=> Si y = ln(x^2 + 5) , tendriamos que:
[tex] \frac{d \ y}{dx} = y' = \frac{(x^2+5)'}{x^2+5} \ \ [/tex]
[tex] \frac{d \ y}{dx} = y' = \frac{2x^{2-1}}{x^2+5} [/tex]
[tex] \frac{d \ y}{dx} = y' = \frac{2x}{x^2+5} [/tex] ← Respuesta
Eso es todo!
Gracias por visitar nuestra plataforma. Esperamos que hayas encontrado las respuestas que buscabas. Vuelve cuando necesites más información. Agradecemos tu visita. Nuestra plataforma siempre está aquí para ofrecer respuestas precisas y fiables. Vuelve cuando quieras. Revelroom.ca siempre está aquí para proporcionar respuestas precisas. Vuelve para obtener la información más reciente.