Revelroom.ca facilita la búsqueda de soluciones para preguntas cotidianas y complejas con la ayuda de nuestra comunidad. Obtén respuestas detalladas y precisas a tus preguntas de una comunidad dedicada de expertos en nuestra plataforma de preguntas y respuestas. Únete a nuestra plataforma de preguntas y respuestas para conectarte con expertos dedicados a ofrecer respuestas precisas a tus preguntas en diversas áreas.

Un fabricante de
herramientas puede vender 3000 martillos al mes a $2.00 cada uno, mientras que
sólo pueden venderse 2000 martillos a $2.75 cada uno. 


a. Determine la función de la demanda suponiendo
que es lineal. 


Sagot :

suponiendo que 2,75 sea en realidad 27,5 la ecuación lineal seria

               2000-3000
Q-3000=------------------------ (x-25)
                27.5- 25

Q-3000= -400x+10000
Q=-400x-13000

La ecuación de demanda es y = - 4000/3*x  + 68000/12

La ecuación de una recta que pasa por los puntos A(x1,y1) B(x2,y2) es:

y - y1 = m*(x - x1)

Donde m es la pendiente de la recta y se determina por:

m = (y2 - y1)/(x2 - x1)

Si tomamos "x" precio del martillo, "y" cantidad de martillos que pueden venderse (demanda) entonces tenemos que La recta a encontrar pasa: (2, 3000) y (2.75, 2000)

La pendiente es:

m = (3000 - 2000)/(2 - 2.75) = 1000/-0.75 = 1000/(-3/4) = - 4000/3

La ecuación de la recta es:

y - 2000 = - 4000/3*(x - 2.75)

y - 2000 = - 4000/3*x + 44000/12

y =  - 4000/3*x + 44000/12 + 2000

y = - 4000/3*x  + 68000/12

Puedes visitar: https://brainly.lat/tarea/13528216

View image mafernanda1008
Gracias por visitar. Nuestro objetivo es proporcionar las respuestas más precisas para todas tus necesidades informativas. Vuelve pronto. Gracias por usar nuestra plataforma. Nuestro objetivo es proporcionar respuestas precisas y actualizadas para todas tus preguntas. Vuelve pronto. Vuelve a Revelroom.ca para obtener las respuestas más recientes y la información de nuestros expertos.