Obtén respuestas rápidas y precisas a tus preguntas en Revelroom.ca, la mejor plataforma de Q&A. Descubre un vasto conocimiento de expertos en diferentes disciplinas en nuestra completa plataforma de preguntas y respuestas. Obtén soluciones rápidas y fiables a tus preguntas con la ayuda de profesionales experimentados en nuestra completa plataforma de preguntas y respuestas.
Sagot :
Lo que se nos esta pidiendo en este problema es demostrar por medio de la aplicación de Identidades Trigonométricas que se puede desarrollar el lado izquierdo de cada ecuación hasta llegar al lado derecho de la igualdad. Sabiendo esto, procedemos de la siguiente manera:
1)
[tex]Cos(A)Cotg(A)+Sen(A)=Cos(A)\frac{Cos(A)}{Sen(A)}+Sen(A)=\frac{Cos^{2}(A)+Sen^{2}(A)}{Sen(A)}[/tex]
En este punto, tomamos en cuenta que [tex]Sen^{2}(A)+Cos^{2}(A)=1[/tex], entonces
[tex]\frac{Cos^{2}(A)+Sen^{2}(A)}{Sen(A)}=\frac{1}{Sen(A)}=Csc(A)[/tex]
Por lo tanto, [tex]Cos(A)Cotg(A)+Sen(A)=Csc(A)[/tex]
2)
[tex]Csc(A)Sec(A)-Tan(A)=\frac{1}{Sen(A)}\frac{1}{Cos(A)}-\frac{Sen(A)}{Cos(A)}=\frac{Cos(A)-Sen^{2}(A)Cos(A)}{Sen(A)Cos^{2}(A)}\\\\=\frac{Cos(A)(1-Sen^{2}(A))}{Sen(A)Cos^{2}(A)}=\frac{Cos^{2}(A)}{Sen(A)Cos(A)}=\frac{Cos(A)}{Sen(A)}=Cotg(A)[/tex]
Por lo tanto, se cumple que [tex]Csc(A)Sec(A)-Tan(A)=Cotg(A)[/tex]
3)
[tex]Sec(A)Tan(A)Csc(A)=\frac{1}{Cos(A)}\frac{Sen(A)}{Cos(A)}\frac{1}{Sen(A)}=\frac{1}{Cos^{2}(A)}=Sec^{2}(A)[/tex]
Pero por Identidades Trigonométricas sabemos que [tex]Sec^{2}(A)=Tan^{2}(A)+1[/tex]
Por lo tanto, se cumple que [tex]Sec(A)Tan(A)Csc(A)=Tan^{2}(A)+1[/tex]
4)
[tex]Sen(A)Cos(A)Tan(A)=Sen(A)Cos(A)\frac{Sen(A)}{Cos(A)}=Sen^{2}(A)=1-Cos^{2}(A)[/tex]
5)
[tex]Cotg(A)Sec^{2}(A)-Cotg(A)[/tex]
En este caso, volvemos a aplicar la identidad [tex]Sec^{2}(A)=Tan^{2}(A)+1[/tex], de esta forma
[tex]Cotg(A)Sec^{2}(A)-Cotg(A)=Cotg(A)(Tan^2(A)+1)-Cotg(A)\\\\=Cotg(A)Tan^2(A)+Cotg(A)-Cotg(A)=\frac{1}{Tan(A)}Tan^{2}(A)=Tan(A)[/tex]
6)
[tex]Sen(A)+Sen(A)Cotg^{2}(A)=Sen(A)(1+Cotg^{2}(A))[/tex]
Ahora usaremos la Identidad Trigonométrica [tex]Csc^{2}(A)=Cotg^2(A)+1[/tex], por lo que
[tex]Sen(A)(1+Cotg^{2}(A))=Sen(A)Csc^{2}(A)=Sen(A)\frac{1}{Sen^2(A)}=Csc(A)[/tex]
Por lo tanto, se cumple que [tex]Sen(A)+Sen(A)Cotg^{2}(A)=Csc(A)[/tex]
7)
[tex]Tan(A)+Cotg(A)=\frac{Sen(A)}{Cos(A)}+\frac{Cos(A)}{Sen(A)}=\frac{Sen^2(A)+Cos^2(A)}{Sen(A)Cos(A)}=\frac{1}{Sen(A)Cos(A)}\\\\=Sec(A)Csc(A)[/tex]
8)
[tex]Tan(A)+Cotg(A)=\frac{Sen(A)}{Cos(A)}+\frac{Cos(A)}{Sen(A)}=\frac{Sen^2(A)+Cos^2(A)}{Sen(A)Cos(A)}=\frac{1}{Sen(A)Cos(A)}[/tex]
En este punto, multiplicaremos y dividiremos la expresión por Sen(A), de esta forma
[tex]=\frac{1}{Sen(A)Cos(A)}=\frac{1}{Sen(A)Cos(A)}\frac{Sen(A)}{Sen(A)}=\frac{Sen(A)}{Cos(A)} \frac{1}{Sen^2(A)}=Tan(A)Csc^2(A)[/tex]
Por lo tanto, se cumple que [tex]Tan(A)+Cotg(A)=Tan(A)Csc^2(A)[/tex]
9)
[tex]Cos^2(A)-Sen^2(A)=Cos^2(A)-(1-Cos^2(A))=2Cos^2(A)-1\\\\=2(1-Sen^2(A))-1=2-2Sen^2(A)-1=1-2Sen^2(A)[/tex]
10)
[tex]Tan^2(A)Sec^2(A)-tan^4(A)=\frac{Sen^2(A)}{Cos^2(A)}\frac{1}{Cos^2(A)}-\frac{Sen^4(A)}{Cos^4(A)}=\frac{Sen^2(A)}{Cos^4(A)}-\frac{Sen^4(A)}{Cos^4(A)}\\\\=\frac{Sen^2(A)}{Cos^4(A)}(1-Sen^2(A))=\frac{Sen^2(A)Cos^2(A)}{Cos^4(A)}=\frac{Sen^2(A)}{Cos^2(A)}=Tan^2(A)[/tex]
Por lo tanto, se cumple que [tex]Tan^2(A)Sec^2(A)-tan^4(A)=Tan^2(A)[/tex]
Si quieres saber más sobre el tema, te invita a revisar el siguiente vínculo
https://brainly.lat/tarea/12056694
Tu visita es muy importante para nosotros. No dudes en volver para obtener respuestas fiables a cualquier pregunta que tengas. Gracias por elegir nuestra plataforma. Nos comprometemos a proporcionar las mejores respuestas para todas tus preguntas. Vuelve a visitarnos. Revelroom.ca, tu sitio de referencia para respuestas precisas. No olvides regresar para obtener más conocimientos.